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The interaction of a spherical shock stress wave generated by a point explosion with a plane 
interface between two elastic media with different mechanical parameters is considered. Using 
the method of zero approximation of ray theory, it is shown that, after passage of a shock 
from a medium with smaller acoustic stiffness into a medium with greater acoustic stiffness, 
the stresses at the front of the refracted shock tend to infinity near the points of quasi-total 
internal reflection, and this can result in local failure of the media. An experiment with a 
two-component medium water-Plexiglas confirms the theoretically predicted phenomenon with 
sufficient accuracy. 

I n t r o d u c t i o n .  In geometrical optics there is the well-known effect of total internal reflection, which 
is related to the distinctive feature of refraction of light rays passing through an interface G between two 
isotropic transparent media with different indices of refraction n: and n2. As follows from Snell's law, for a 
light ray that  is incident at angle p on the interface and is refracted at angle X, the relation nl sin ~ = n2 sin X 
holds. Therefore, X = arcsin[(nl /n2)sin~].  In the case nl > n2 for a certain value of ~, the expression in 
square brackets becomes equal to unity and exceeds it with further increase in ~. Since the arcsine function 
is not defined for arguments greater than unity, there is no refraction of light for these values of ~. In this 
case, the entire energy brought to the interface G by the incident wave is carried away by the reflected wave, 
so that  light does not penetrate  into the second medium (the effect of total internal reflection). 

A similar effect also takes place for shock waves at interfaces between elastic media, although all 
phenomena are more complicated in this case. 

Let P be longitudinally polarized shock waves and S be transverse waves. The subscripts 1 and 2 
correspond to the waves propagating in media 1 and 2, respectively, and the minus and plus signs refer to 
parameters  of the waves before and after their impact interaction with the plane G separating media i and 2. 

We assume that  a plane longitudinal shock wave P :_  (Fig. 1), propagating in medium 1, is incident 
at angle 0:_ on the plane interface G between media 1 and 2. Interaction of the wave with this plane 
gives rise to reflected P:+ and refracted P2+ longitudinal shock waves, which propagate in media 1 and 2, 
respectively. The values of the refraction angle 02+ can be obtained using Snell's law for elastic media [1] 
sin S : _ / a l  -- sin82+/a2, whence sin82+ = a2 s i n S : _ / a : ,  where a :  and a2 are the propagation velocities of 
P-waves in the corresponding media. 

If a2 > a : ,  then sin82+ = 1 for some 81- = arcsin(a:/a2), and it must be greater than unity 
with further increase in 81-. However, since the function sin82+ cannot be greater than unity, the value 
81- = arcsin(al/a2) is a limiting value, for which sin82+ -- 1, 82+ = 7r/2, and the interaction of the 
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wave (P1-)  with the boundary G follows the pa t te rn  described above. For 01- > arcsin(al/a2) there is no 
refraction of the t ransmit ted wave (P2+) because the angle 02+ must be larger than re/2, but  this is impossible. 

The point at which 01- = arcs in(a l /a2) ,  sin02+ = (a2/al)s in(arcsin(al /a2))  = (a2/a l ) (a l /a2)  = 1, and 
02+ = rr/2 is not a point of total internal reflection because there still exists a transverse wave ($2+), whose 
velocity/32 is less than the velocity a2 and, hence, the energy of the incident wave P1-  is not entirely reflected 
from the surface G. Therefore, we call this effect quasi-total internal reflection (QTIR).  

We should consider one more distinctive feature of the interaction of the incident, reflected, and 
refracted waves at the point H of conjugation of their root lines on the surface G with approach to the point 
of QTIR.  Since, for a2 > C~I, sin01_ = a l / a 2  at this point, we have a l / s in01-  = a2. However, geometric 
constructions show that  the left side a l / s in01-  of the last equality represents the velocity v of motion of 
the point H along the surface G. At the point of QTIR,  the velocity v, which essentially is the velocity of 
propagation of the per turbat ion of the second medium along the boundary G, coincides with the velocity 
a2 of propagation of the wave P2 in this medium. It is known that  such situations in wave mechanics are 
critical since they are accompanied by infinite increase in the amplitude of the generated wave. Therefore, 
we can expect  that  unbounded growth of strains (and stresses) at the point of QTIR occurs in our case too. 
To verify this assumption, we carried out theoretical and experimental studies. 

1. T h e o r e t i c a l  S t u d y  o f  t h e  Q T I R  Ef f ec t .  To solve the problem of propagation of unsteady waves 
in elastic media, we choose the ray method [1-3], which allow us to obtain a sufficiently accurate solution at 
the wave fronts using a ray series. 

In an analysis of shock waves, the most impor tant  information on the dynamic effect of a wave on 
the objects considered is contained in the zeroth term, which determines the jump of the sought function at 
the wave front and the main part  of the momentum transferred by the wave. Thus, only the zeroth term 
in this expansion should be taken into account. In this ease, the problem can be substantially simplified 
by considering only short impulsive waves, for which it is not necessary to construct the entire longitudinal 
shock-wave profile. To solve this problem, it is convenient to use methods developed in the stereomechanical 
theory of impact [4]. 

Under the assumptions formulated above, the directions of the rays of waves reflected and refracted at 
the interface G are determined using Snell's law [3]. In the case of a longitudinally polarized incident wave, 

it is wri t ten as 

sin01_ = ~ = ~ =  ~ = ~ , s i n 0 1 +  sin~bl+ sin02+ sin~b2+ (1.1) 

~I  a l  /31 ~2 /32 

where 0 and ~b are the angles of incidence of the longitudinal and transverse waves, respectively. 
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The intensities of the waves t ransformed at the interface are determined from the condition of con- 

servation of momen tum in the ray tubes of the corresponding shock waves before and after their interaction 
(Fig. 1) and from the condition of continuity of the velocity vector/_f  of elastic particles with longitudinal 

/t and t ransverse /J  components  at the plane interface G. These conditions have the form of linear algebraic 

equations [3]: 

alPlZtl+ sin 81 cos 81 +/31P1~)1+ cos 2 ~91 + ct2P2U2+ sin 02 cos 02 

--/32P262+ COS 2 ,w2 = o Z l P l i t l -  sin 01 c o s  81,  

Ctl#1?il+ COS 2 01 -- ,/~tfll~l+ sin ~bi COS ,~1 -- O~2f12it2+ C0S2 02 (1.2) 

-/32p2"b2+ sin ~2 cos D2 = - a l p l i t l -  cos 2 81, 

h i+ sin 01 + ~)1+ c o s  ~31 - z'L2+ sin 82 + 't)2+ cos ~'2 = - u l -  sin 81, 

Z~l+ cos 01 - 91+ sin ~'1 -}- 't~2+ COS 02 "1- 't)2+ sin t)2 = / L i -  cos 01. 

Here pi are the densities of the media, and ai and/3i are the propagat ion velocities of the longitudinal and 

transverse waves, respectively. This relations make it possible to express the velocities/O+, ~)1+,/~2+, and ~)2+ 
of the elements of the elastic media via the ve loc i t y /O-  in the incident wave and to construct the reflected 

and refracted waves. 
Using the expressions for the stress tensor in radial coordinates (~, 7?, 4), it is not difficult to find 

the relation between the quantities ~1+, ~)1+, ~/2+, and ~)2+ and the jumps of stresses at the shock front 
~ = - pa i r  and a ~  = -p~i , .  This allows us to consider the wave interaction at the interface from the 

viewpoint of the theory of impact  of rigid bodies [4]. 
Using the relations obtained above, we studied numerically the rearrangement  of the surface of a shock- 

wave front at the interface between elastic media and the change in stresses for the reflected and refracted 
shock waves. It  is shown tha t  as the shock passes from a medium with smaller acoustic stiffness to a medium 

with greater  acoustic stiffness, critical s tates arise at points H on the interface G at which the condition 
c~2 sinS1- = a l  is satisfied. In these states,  the measure of geometrical divergence R S  ~ 0 at the front of 

the t ransmi t ted  wave, and, therefore, /t2+ ---* ec and ~ 2 +  --~ co. Here R and S are the radii of curvature 
of the front surface in the corresponding directions [3] and ~ 2 +  is the longitudinal strain of an element of 
the second medium. This  property is related to the fact tha t  the coefficient matr ix  of the left side of system 

(1.2) is degenerate and, even for a bounded right side, the system has a solution that  goes to infinity. 
Because of the unbounded growth of stresses near the points of QTIR,  local stratification and failure 

of materials  can occur in these regions in real stratified nonhomogeneous elastic media. However, an exper- 
imental  verification of this effect is difficult because of the complexity of measuring stresses in a stratified 

body. Therefore, we performed experiments for the case where strain measurements  are possible. The initial 

shock wave was generated in water, and Plexiglas was used as the elastic medium on which the shock wave 
was incident and which facilitated occurrence of the Q T I R  effect. Since water cannot resist shear forces, 

S-waves cannot  appear  in it. Therefore, we should set ~bl+ = 0 in (1.2). Thus, only three equations for the 

three unknowns ~1+,/~2+, and ~)2+ are retained in the system. 
The  theoretical and experimental  results were compared for the following physicomechanical param-  

eters of the media: for water, Pl = 103 k g / m  3 and a l  = 1500 m/sec;  for Plexiglas, P2 = 1.12 �9 103 k g / m  3, 
E = 5.25- 109 Pa, v = 0.35, and a2 = 2500 m/sec.  We assumed tha t  the spherical shock wave was generated 

by a point source in water  at a distance of 0.3 m from the surface G. At the moment  when it reached the 

point x = 0, y = 0 on the surface of the elastic plate, the stress at its front was cry1_ = 106 Pa. 

The  procedure described above was used to calculate the stress-tensor components az  = az2+ (x) (Fig. 
2) and ay = O'y2+(x) (Fig. 3) at the point H in the plate as this point moved along the x axis on the plane 

G. One can see that  the compressing stress az2+(x) increases monotonically and tends to infinity at the 
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point of Q T I R  x = 0.225 m, which corresponds to the angle of Q T I R  81- = arcsin(c~l/c~) :-  36.87 ~ The 

function O'y2+(x ) first decreases (Fig. 3). However, near  the point of QTIR,  it increases rapidly to infinity. 
For x > 0.225 m, the stress functions Crx2+(X ) and ay2+(x) were not calculated since the stress waves in the 
second medium are no longer shock waves. 

2. E x p e r i m e n t a l  I n v e s t i g a t i o n  o f  t h e  Q T I R  Ef fec t .  For experimental  investigations of mechan- 
ical wave phenomena  in stratified media,  we have improved the method described in [5, 6]. Since full-scale 

experiments  are very expensive, p r imary  at tent ion was given to laboratory  modeling of wave processes in lay- 
ered media using electrical explosions. Since water  transfers energy well and underwater  electrical explosions 

are fairly safe, all laboratory  experiments  were performed in a cylindrical t ank  filled with a liquid. We used 

a cylindrical tank  3.2 m in diameter  and 3 m high filled with water. For such a volume of water,  the wave 
processes tha t  take 2 �9 10 -3 sec can be recorded in the center of the tank  ignoring the effects of the walls 

and the free surface. Shock waves were generated by an electrical breakdown of a copper wire between the 

electrodes of a high-voltage cable connected to a high-voltage device made of four IKM-25-12 capacitors.  The  

conductor  explodes when a high voltage (up to 10 kV) is applied to the electrodes. For a working voltage of 
2.5.104 V and a to ta l  capacity of 48 .10  -6 F, the m a x i m u m  energy accumulated in the capacitors can reach 

1.5 �9 104 J, which is equivalent to the energy of explosion of 2 g TNT.  

This  experimental  facility produces shock waves tha t  have a steep front (about  10 -7 sec) and an 

exponential  drop in postshock pressure. The  t ime constant  of the pressure drop for this facility is in the 
range 3 �9 10-5-6  �9 10 -5 sec, i.e., the pulses generated by the electrical explosions are sufficiently short  and 

their propagat ion  in stratified media  can be described by the ray method [3]. 

Electrical explosion was produced in water  at a distance of 0.3 m from a Plexiglas plate with dimensions 
0.6 x 0.6 m and thickness 0.08 in, and it generated a pressure of 106 Pa in the epicenter of the incident shock 

wave. The  physicomechanical parameters  of the media  were the same as those used above in theoretical 

calculations. 
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TABLE 1 

x , m  P m ' 1 0  - ~ , P a  ~m+.104 

0 
0.05 
0.10 
0.15 
0.20 
0.225 
0.25 
0.30 
0.35 

10.6 
10.2 
9.8 

10.5 
10.4 
9.9 

10.4 
10.4 
10.6 

0.20 

-0.03 
-0.66 

-1.62 

-3.80 

-6.20 

-8.80 

-5.73 
-3.20 
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The sett ing of the experiments on shock-wave propagat ion along the plane interface G between elastic 

media  were complicated by the fact that  the examined strain fields in both the liquid and solid media 
subjected to elastic deformation are discontinuous at four axisymmetric  fronts intersecting on a circle that  

lies on the plane G and enlarges concentrically with time. To overcome the technical difficulties involved in 

the experimental  registration of these fronts and measurement  of the rapidly changing strain functions on 
them,  we constructed a special case which could be used to move the source of electrical explosions in the 

water  relative to the strain gauge at tached to the Plexiglas plate. The experimental  setup is shown in Fig. 
4, where numbers  1-9 denote the points of successive initiation of explosions, Y-9 ~ denotes the location of 

the pressure transducers.  10 is the strain gauge, 11 is the Plexiglas plate, and 12 is the frame. An advantage 

of this setup is tha t  successive displacement of the source of electrical explosions relative to the same strain 
gauge fixed on the plane G is equivalent to placing the strain gauge at various points 1"-9" on the surface 
G and a fixed position of the explosion source at the point 1. Since, in this case, we use the same strain 

gauge with the same method of a t tachment  to the plate, it is possible to measure strains at various distances 
from the explosion source with the same error. The  pressure transducers 1~-9 ~ were also used to control the 

regularity of the position of the explosion source. 
Strains were measured by a KTD-7B semiconductor strain gauge with a sensitivity coefficient of 100, 

a resistivity of 620 ~,  and a 0.007-m base, which was at tached to the plate using I~D-20 epoxy adhesive. 
The  pressure at the shock-wave front was measured by a pressure transducer made of TsTS-19 piezo- 

electric ceramics, which was connected to an AVK-3 coaxial antivibrator  cable by the epoxy adhesive, which 
provided for reliable waterproofing and rigid fixation. This procedure allowed us to eliminate the cable effect 
and to measure the pressure at the shock-wave front with small error. The pressure measurements  were 

recorded by one channel of a C9-16 double-beam oscillograph. The  other channel was used to measure the 

strains ~x2+. 
Dynamic  calibration of the transducers was performed using a shock tube. The experiments  showed 

tha t  the sensitivity of the pressure transducer made of TsTS-19 piezoelectric ceramics is linear in the pressure 

range 0-107 Pa. The  total  error of calibration of the pressure transducers was not greater than 10%. 

Results of the experiments were entered into the computer  and processed using the appropr ia te  math-  

ematical  software. 
%Ve produced 33 electrical explosions by the procedure described above. Table 1 shows the distance 

x from the strain gauge to the explosion epicenter, the mean values of the readings of the control pressure 

t ransducer  Pro, and the mean values of the max imum relative compressing strains c m at the measurement  x2+ 
points on the plate  surface. The max imum strains are at a distance of 0.25 m from the explosion epicenter, 

and this differs from the theoretical results only by 10%. This  difference can be explained by the experimental  
error and inaccuracy in measurements of the velocities a l  and c~2 of longitudinal waves in elastic media. We 

also note that  there is a difference between the theoretical strain e=2+(0) = 0 at the point x = 0 and the 
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~ m  experimental tensile strain _z2+(0) = 0.2. 10 -4 (see Table 1). This difference can be explained by direct 
impact of the pressure wave in water on its semiconducting element. The experimental value for the angle of 
QTIR is 81- = arctan (0.25/0.3) = 39.79 ~ 

For comparison, the theoretical strains (solid curve) and the strains averaged over a series of experi- 
m ments (points) ~x2+(x) are shown in Fig. 5. One can see that  at a certain distance from the point of QTIR, 

these results are fairly close. The available difference can be explained by the fact that  in the calculations 
we used a shock-wave profile in the form of an ideal step function and ignored the energy dissipation due to 
viscous friction in the materials. Allowance for these factors will probably lead to a better agreement between 
theoretical and experimental data. 

In conclusion, we point out that  the detected effect of unbounded growth of strains and stresses at 
points of QTIR at interfaces between elastic media is valid only within the framework of the theory of perfectly 
elastic bodies. In real continuous media, which are not perfectly elastic, this effect is manifested as a sharp 
increase in these parameters near the critical point. 
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